On Synthesis of Reversible Circuits with Small Number of Additional Inputs Consisting of NOT, CNOT and 2-CNOT Gates

نویسنده

  • Dmitry V. Zakablukov
چکیده

В работе рассматривается вопрос сложности обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT и имеющих малое число дополнительных входов. Изучается функцииШеннонa сложности L(n, q) обратимой схемы, реализующей отображение f : Zn2 → Z n 2 , при условии, что количество дополнительных входов q 6 O(n). Доказывается оценка L(n, q) ≍ n2n / log 2 n для указанного диапазона значений q. The paper discusses the gate complexity of reversible circuits with the small number of additional inputs consisting of NOT, CNOT and 2-CNOT gates. We study Shannon’s gate complexity function L(n, q) for a reversible circuit implementing a Boolean transformation f : Zn2 → Z n 2 with q 6 O(n ) additional inputs. The general bound L(n, q) ≍ n2n / log 2 n is proved for this case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Asymptotic Gate Complexity and Depth of Reversible Circuits Without Additional Memory

Reversible computation is one of the most promising emerging technologies of the future. The usage of reversible circuits in computing devices can lead to a significantly lower power consumption. In this paper we study reversible logic circuits consisting of NOT, CNOT and 2-CNOT gates. We introduce a set F (n, q) of all transformations Zn2 → Z n 2 that can be implemented by reversible circuits ...

متن کامل

Asymptotic bounds of depth for the reversible circuit consisting of NOT, CNOT and 2-CNOT gates

The paper discusses the asymptotic depth of a reversible circuit consisting of NOT, CNOT and 2-CNOT gates. Reversible circuit depth function $D(n, q)$ for a circuit implementing a transformation $f\colon \mathbb Z_2^n \to \mathbb Z_2^n$ is introduced as a function of $n$ and the number of additional inputs $q$. It is proved that for the case of implementing a permutation from $A(\mathbb Z_2^n)$...

متن کامل

General Upper Bounds for Gate Complexity and Depth of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates

В работе рассматривается вопрос сложности и глубины обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT, в условиях ограничения на количество используемых дополнительных входов. Изучаются функции Шеннонa сложности L(n, q) и глубины D(n, q) обратимой схемы, реализующей отображение f : Z2 → Z n 2 , при условии, что количество дополнительных входов q находится в диапазоне 8n <...

متن کامل

On Asymptotic Gate Complexity and Depth of Reversible Circuits With Additional Memory

The reversible logic can be used in various research areas, e. g. quantum computation, cryptography and signal processing. In the paper we study reversible logic circuits with additional inputs, which consist of NOT, CNOT and C2NOT gates. We consider a set F (n, q) of all transformations Bn → Bn that can be realized by reversible circuits with (n+q) inputs. An analogue of Lupanov’s method for t...

متن کامل

Quantum Circuit Optimization by Hadamard Gate Reduction

Due to its fault-tolerant gates, the Clifford+T library consisting of Hadamard (denoted by H), T , and CNOT gates has attracted interest in the synthesis of quantum circuits. Since the implementation of T gates is expensive, recent research is aiming at minimizing the use of such gates. It has been shown that T -depth optimizations can be implemented efficiently for circuits consisting only of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.02346  شماره 

صفحات  -

تاریخ انتشار 2018